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The motion of a thin oil sheet under the steady 
boundary layer on a body 

By L. C .  SQUIRE 
Royal Aircraft Establbhment, Bedford 

(Received 10 March 1961) 

A solution is obtained for the motion of a thin oil sheet, of non-uniform thickness, 
under a boundary layer. The following points are deduced: (a )  The oil flows in the 
direction of the boundary-layer skin-friction, except near separation, where the 
oil tends to indicate separation too early. These conclusions are independent of 
oil viscosity. (b)  The effect of the oil flow on the boundary-layer motion is very 
small. 

The application of the results to the interpretation of oil-flow patterns is 
briefly considered. 

1. Introduction 
The oil-flow technique is nowadays widely used for visualization of the surface 

flow on wind-tunnel models. In  this technique the model is coated with a thin 
layer of oil and the oil pattern is observed during, and at the end of, a tunnel run 
The types of oil used vary widely. Heavy gear oil is used in continuous transonic 
and supersonic tunnels, and times of up to a quarter of an hour are needed to 
develop the full flow pattern (Stanbrook 1957). On the other hand, very light 
oils are used in intermittent tunnels where the total running time is 10-20sec 
(Winter, Scott-Wilson & Davies 1954). Paraffin is often used in low-speed wind 
tunnels (Black 1952), and heavy oils are used in low-speed water tunnels (Prandtl 
1952). 

It is of interest to know to what extent the presence of the oil affects the flow, 
and also what the oil-flow pattern represents. As a basic step in the understand- 
ing of the oil-flow technique, the theoretical motion of a thin oil sheet, of non- 
uniform thickness, on a surface under a- boundary layer is studied here. 

The main parameter in the problem is the ratio of the viscosity of thefluid 
in the boundary layer to the viscosity of the oil. The solutions obtained are valid 
for all values of this ratio likely to be found in practice. Numerical results have 
been produced for infinite wings with velocity distributions, outside the boundary 
layer, of the form U = ax or U = Po -PI x. The parameters a, Po and have been 
related to typical pressure distributions and are calculated in Appendix 1. 

The numerical methods apply to incompressible laminar boundary layers, 
but the extension of the results to compressible and turbulent layers is discussed 
in $6. 
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2. Equations governing the motion of a thin oil sheet 
2.1. Equations for the oil-flow direction 

The thickness h of the oil sheet is a function of surface position and time. It is 
generally not greater than about 0.05 in., and in the following analysis will be 
assumed to be of the same order as the boundary-layer thickness. Then the motion 
of the oil is governed by the equations of slow viscous motion: 

together with the continuity equation 

au av aw 
ax ay aZ -+-+- = 0. (4) 

The co-ordinate system, and velocity components are defined in figure 1. The 
suffix 2 refers to motion in the oil and suffixes 0 and 1 refer to free-stream and 
boundary-layer flow, respectively. The boundary conditions are (i) that the oil 
velocities are equal to those in the boundary layer at the surface of the oil, 
(ii) that the viscous stresses in the oil and the air are also equal at  the oil/air 
surface, and (iii) that at the body surface the oil is stationary. These conditions 
may be written 

u, = ug, v, = vz, w, = wz at  z = h, 

uz = vz = wz = 0 at z = 0;  
(5) 

au, auz av, avz 
aZ aZ 1 aZ 2 aZ pl-=pz-, p - = p  -- at z = h .  

(For the derivation of (6)) see Appendix 2,) 
Equations (1)  to (3) will now be simplified by order-of-magnitude considera- 

tions, taking account of two small quantities, the boundary-layer thickness S 
and the ratio of the viscosities of air and oil pl/pz ( = A, say). (For the range of 
oils used in wind tunnels, h lies in the range 

According to standard boundary-layer theory, au,/az and av,/az are O( 118). 
Thus, by equation (6)) au,/az and av#z are O(h/S) .  At z = 0,  uz and vz are zero. 
Thus, within the oil, uz and vz are O ( h ) ;  their derivatives with respect to x and y 
are also of the same order of magnitude. 

From the continuity equation, it then follows that aw/az is O(h)  and, since 
wz = 0, at z = 0,  that wz is O(hS).  Differentiation of the continuity equation with 
respect to z then shows that a2wz/az2 is O(h/S) .  

The order of the terms au,/at, av@t will now be considered. It has already been 
shown that uz and vz are O(h) ,  and so their influence on the boundary layer will be 
small. In  this case, equations (1) to (6) represent the motion of an oil sheet under 

to 
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a steady boundary layer, in which the only variation with time enters through the 
boundary conditions (5) and (6), since h is a function of time. Therefore the deri- 
vatives under consideration may be written 

At the edge of the layer, w2 = dh/dt; thus dhldt is O(6h) while au2/ah and av2/ah 
have the same order of magnitude as au2/az and aw2/az, namely O(h/S) .  Thus the 
time derivatives of u2 and w2 are O(h2). Similarly, the derivative aw2/at is O(h2S). 

FIUURE 1. The co-ordinate system. 

When the order of magnitude of the terms in equation (3) are considered, it is 
found that the pressure change through the oil layer is O(hS).  Thus the pressure 
may be regarded as constant through the oil layer; and since by standard boun- 
dary-layer theory p,(x, y) = p,(x, y), then 

P2@, Y) = P l h  Y) = Po@, Y). ( 7 )  

If equations (1) and ( 2 )  are now divided by u2, the pressure terms may be 
written (with po = p l )  

( 8 )  
1 aP2 aP0 1 aP0 

P2 ax P1 ax "1Po ax ' 
- - __- 

By boundary-layer theory, S is O(&, while by Bernoulli's equation p;lap0/ax 
and p- 'ap,/?y are O(1). Thus the pressure terms in equations (8) and (9) are 

11-2 
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O(h/a2).  Equations (1) and (2) may now be simplified by retaining terms of the 
highest order only, whereupon they become 

In equations (10) and (1 1) the pressure terms are known from the external flow, 
so that the equations are ordinary second-order equations for u2 and v2. These 
equations must be solved, in conjunction with the boundary-layer equations 

au, au, awl 1 ap a2u ', 
ul-+vla+Wl- = ---+v -l ax Y a2 Plax 1 az2 7 1  

to satisfy the boundary conditions (5) and (6). [Equations (12) and (13) strictly 
apply only to a flat surface, but they may be used for slightly curved surfaces. 
On more highly curved surfaces the full equations must be used (see, for example, 
Squire 1956).] 

A simple iterative approach, to be used here, is to find solutions of equations (10) 
and ( 1  1)  satisfying the conditions u2 = v2 = 0 at z = 0,  andp1(aul/az) = p2 (au,/az), 
,ul(avl/az) = ,u2(av2/az) at x = h. The third condition is then satisfied by finding 
a solution of the boundary-layer equations such that at z = h, u1 = (u2),=,, 
w1 = ( w ~ ) ~ = , ,  where (u~)~,,, and (v2),=, are found from the solution of the oil-flow 
equations. (The boundary condition w2 = w1 should also be applied but as w2 is 
O(h,  6 )  this condition is replaced by w1 = 0 at z = h.) This process is iterative 
since (au,/az),=, and (awl/az),,, depend on (u2),=, and (v~)~,,.  However, since 
these velocities are O(h) ,  the changes in ( aul/k3z),,h and (av,/az),,, are also small and 
so the process should converge quickly. 

By direct integration of equations (10) and (11), solutions which satisfy the 
two boundary conditions are found to be 

At the oil surface, z = h, these solutions give 

which are the velocities needed in the solution of the boundary-layer equations. 
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The investigation of the boundary layer with the boundary conditions u1 = u2, 
v1 = v2 is carried out in $5 3 and 4, where it is shown that the change in the boun- 
dary-layer skin friction is small. 

It should be noted that the oil film, in addition to giving the boundary layer 
a non-zero velocity at  the oil surface, also effectively changes the body shape, 
and hence the external flow. The latter effect, however, is small for thin oil 
films and is ignored. Then the boundary-layer equations can be solved for the 
original pressure distribution with the non-zero velocity condition transferred to 
the body surface, that is u1 = ( u ~ ) ~ ,  v1 = (v2)h  at z = 0. 

It is advisable a t  this point to consider the range of validity of the order-of- 
magnitude analysis made in this section. Goldstein (1948) has shown that the 
approximations of boundary-layer theory break down in the immediate neigh- 
bourhood of separation; consequently, the equations for this oil flow, which are 
based on this theory, will also be invalid in this condition. As the main interest 
is to determine the position of separation, it is important to know how close to 
separation the simplified equations hold. A numerical study of the boundary- 
layer solution for a linearly retarded main-stream has shown that the equations 
are valid for 99.5 % of the distance to separation. It is reasonable to assume that 
the simplified oil-flow equations are also valid in the same region. 

2.2. Equation governing the thickness of the oil sheet 

SO far the oil thickness h has been regarded as an arbitrary function of surface 
position and time. The equation satisfied by this function will now be determined. 
Consider the area ABCD in figure 1; then in time 6t the increase in height multi- 
plied by the area SxSy is equal to the amount of oil which has moved on to the 
base ABCD less the amount which has moved off this area. In  the infinitesimal 
limit, the equation for h becomes 

ah - = -%Io a h  U,rlZ--J-- a h  v2dz.  

at aY 0 

On the substitution for u2 and v2 from equation (14), this becomes 

Equation (17) is a non-linear partial differential equation where the coefficients 
(aul/az),,, and ap/ax, ap/ay are, in general, known only in numerical form. Thus 
solutions will usually have to be found by numerical methods. However, one 
simple solution has been found corresponding to flow near a stagnation point 
in two-dimensional flow. This solution is described in $ 3; the result of a direct 
numerical integration of equation (17) will be described in $ 4.2. 

3. Oil motion near a stagnation point in two-dimensional flow 
Near a two-dimensional stagnation point, the velocity distribution in the 

streamwise direction outside the boundary layer is of the simple form u = ax; 
the oil flow in this case is of special interest because both the modified boundary- 
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layer equations and equation (17) can be solved. Making, as in standard boun- 
dary-layer theory, the transformation u, = axf'(r), where 7 = (u/v,)*z and the 
accent denotes differentiation with respect to 7, we find that the two-dimensional 
boundary-layer equations (i.e. (12) and (13) with v1 = 0) reduce to 

f"(7) +f"(r)f(7) = {f'(7)12 - 1 (18) 

(cf. Goldstein 1938, p. 139). 
At the wall, z = 0, we havef'(0) = (u,),/ax, instead, of the more usual value 

f'(0) = 0. The other boundary conditionsremain the same, i.e.f(O) = O,f'(00) + 1. 
The value of (u~)~, can be found from equation (15) to be 

so that 

In  practice equations (18) and (20) must be solved by iteration, but before this is 
possible it is necessary to find h, which (by substitution of equation (19) in equa- 
tion (17)) is given as the solution of the equation 

provided h is independent of x, which is true if h is constant at time t = 0. 
Equations (18), (20) and (21) now depend on the three parameters y ,  A and 

B, where y and A are functions off"(0). Equations (18) and (21) can, however, be 
solved for arbitrary values of these parameters, and the solutions can be com- 
bined iteratively with equation (20) to find the solution of any particular problem. 

First consider equation (18). As (uJh is O(A),  this equation can be linearized 
by putting f'(7) = f i (7)  +yg'(q), where fA(7) is the standard two-dimensional 
solution and where g'(0) = 1, g(0) = 0, g '(00) + 0. Then g'(7) satisfies the equation 

g " ( r )  +fO(T) g"(7) +f{(r) d 7 )  - d ( 7 )  = 0. (22) 

This equation has been solved by standard numerical techniques to give the 
solution tabulated in table 1. 

The solution of equation (21) is readily obtained as 

where C = hB(B/A), K = h/h, and h, is the oil height at  t = 0. K is plotted against 
Ah,t in figure 2 for various values of C. 

These solutionsforf(7) andh,can now be combined to find the oil and boundary- 
layer flow in the following particular case. The initial oil thickness is assumed to 
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be0.018in. withh = 1 x and the kinematic viscosity of air to be 2 x 10-4ft./ 
sec. The external velocity is assumed to be of the form U = 104xft./sec (i.e. 
a = 104sec-l). This corresponds, for example, to an aerofoil in an airstream of 
120 ft./sec with the flow outside the boundary layer attaining the main-stream 
velocity at  0.144in. behind the stagnation point. 

71 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 

g'(11) 7 
1.000 2.0 
0.840 2.2 
0.686 2.4 
0.547 2.6 
0.425 2.8 
0.322 3.0 
0.238 3.2 
0.171 3.4 
0.119 3-6 
0.081 

g"(0) = -0.810. 

TABLE 1 

d ( 7 )  
0.053 
0.034 
0.021 
0.012 
0.007 
0.004 
0.002 
0.001 
0.000 

0 1 2 3 4 5 6 

Ah,t 

FIGURE 2. Variation of the thickness of the oil sheet at a stagnation point. 

Consider the oil flow at the start of the motion. In  the Gst  stage of the iteration, 
use is made of the standard two-dimensional solution for f:(O), from which 
f"(0) = fi(0) = 1.232 and so y = 4.3 x (equation (20)). With this value the 
second approximation for f"(0) becomes 1-228, and there is no change in y .  
Thus, in this case, with a rather thick oil layer, the skin friction (which is pro- 
portional tof"(0)) is reduced by less than 7$ %. 

Now consider the motion after 10 sec. Using f "(0)  = 1-230 and the above values 
of h, and a, it follows that C = 5.8 and Ah,t = 65, so that from equation (24) K is 
approximately 0.015 and the oil thickness has been reduced to less than one- 
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sixtieth of its original value. This example, although of little practical interest, 
is of value from two points of view. I n  the first place the numerical results can 
be used Go check the magnitude of the terms ignored in equations (l) ,  (2) and (3). 
Also, the change in oil thickness is quite rapid in this case, so that it is possible 
that the unsteady boundary-layer equations should have been used. However, 
in the lOsec considered, y changes from 4.3 x 10-3 to almost zero. Thus, 
dy/dt + 4.3 x sec-l and, since u1 = ax(f’(7)  +yg’ (y) } ,  dul/dt  + ax x 4.3 x 10-4. 
In  equation (12) the dominant terms near z = 0 are p i lap /ax  and v, a2ul/az2, and 
p i lap laz  = - a2x. Thus the ratio of the unsteady term aul/at compared with the 
dominant terms is a-1 x 10-4 or O(lO-S) ,  which confirms that use of the steady 
equation is justified. 

4. General solutions of the equations of 52 
4.1. Effect of the oil on a two-dimensional boundary layer with an  arbitrary 

pressure gradient 

In this section the effect of the oil on two-dimensional boundary layers is con- 
sidered. The extension to three-dimensional boundary layers would involve 
considerable numerical work, which has not been carried out since the analysis 
of the present section suggests that the effect of the oil is extremely small for 
cases which are likely to arise in practice. The method is based on the momentum 
equation; i t  is first shown that this equation is unaltered by the changed inner 
boundary condition,? and then that the velocity can be represented by a modi- 
fied Pohlhausen profile. 

By integration of the two-dimensional form of the boundary-layer equations 
(12) and (13) with respect to x ,  the following equation is obtained 

where pT1ap/ax has been replaced by uo(auo/ax). Using the continuity equation, 
we reduce the second term of the left-hand side by writing 

= [ w l u l ] ~ + / 0 8 u l ~ d z .  

The lower limit of the term in square brackets is 0, since at  z = 0 we have w1 = 0 
(this is true although u1 =+ 0); at x = 6 we have 

Thus equation (25) becomes 

j- For convenience the inner boundary condition will be applied at z‘ = 0 rather than 
z = h, and the dash dropped in the remainder of the paper. 
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This equation is exactly the same as the standard two-dimensional equation, 

where 

8/32 8 2  au 2v 1 and will be written 
-- - 2 - 2 ( 2 + f l ) - - - L  
ax uo ax uo ’ 

8 = j O 8 ( l - 2 ) 2 d z ;  6 1 -  - s,” (1 -3) UO dz, 

H = 61/8, 1 = 

Equation (38) may be solved in the usual manner by regarding ul/uo as a poly- 
nominal function of z / S ,  satisfying certain boundary conditions. These conditions 
will now be considered. At the edge of the boundary layer, u1 tends smoothly 
to uo. Thus, as in the standard method, 

At z = 0, we have u1 = (u& (i.e. the oil velocity). Thus, u,/uo = ( u ~ ) ~ & ~  = 7, 
where y may be a function of x. At z = 0, we also have w1 = 0; thus, in equation 

But 

and therefore 

A Pohlhausen profile modified to satisfy these boundary conditions is 

Then, by integration of this function, it; is found that 

(31) 

(32) 

6 
315 

8 = __ ((1 -7) (37 +wy) - +A( 1 +5&) -&A2), 

s 
6 - - -{36(1--y)-A}, 120 

These values could be substituted into equation (28) to give an equation for A. 
Instead, a slightly different approach is used which leads to less numerical work. 
In  this approach, H and 1 are regarded as functions of the parameters 

(O2/u0) (a2ul/az2)z=o [ = (02/s2) A = a, say] 

and y. These functions, obtained from equations (31) and (32)) are plotted in 
figures 3 and 4. 
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The method has been used to study the boundary layer developed by an 
external velocity of the form uo = Po -P1x. The following cases have been 
assumed: y = 0, 0.05, and y varying linearly from + 0-05 a t  the leading edge 
to - 0.05 a t  the trailing edge.? The resulting skin-friction curves are plotted in 
figure 5. From comparison with the curve in the absence of oil (y  = 0) ,  it  will be 

H 

U 

FIGURE 3. The function H ( a ,  y) .  

a 

FIQURE 4. The function 2(a, y). 

seen that the major effect of the oil is where the skin friction approaches zero, 
that is in the vicinity of separation; the distance to  separation is changed by at 
most 9 yo. In Appendix 1 values of y likely to be found in practice are investi- 
gated, and it is found that maximum values of y are of the order of 0.01. Thus, 
in general, the oil will only have a small influence on the boundary layer, changing 

t. Too many parameters enter a practical case for it to be tractable to use an actual 
distribution of y. However, in all cases y is positive at the leading edge and negative at 
separation. 
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the distance to separation by at  most 3 %. It should be noted that y increases 
as the oil viscosity decreases, and thus the influence of the oil on the boundary 
layer increases with a decrease in oil viscosity. 

The accuracy of the present analysis for the boundary layer on a moving 
surface, as compared with the accuracy of the Pohlhausen method for a stationary 

FIGURE 5. Variation of the skin-friction on a surface for different values of 
the parameter y. 

surface has been investigated briefly. For the case of zero-pressure gradient the 
skin friction as given by equations (28) and (30) has been compared with an exact 
solution of the problem (Squire 1956). The skin-friction values given by the two 
methods are in close agreement for all values of y between 0 and 1. With an ad- 
verse pressure gradient, the accuracy is more difficult to estimate; however, it 
has been found that for the velocity distributions u = /3,,-~3~x and y 2 0.15, 
the separation point begins to move towards the leading edge as y is increased, 
thus reversing the trend shown in figure 5 for y < 0.05. This forward movement 
of the separation point is contrary to the expected physical action of the moving 
surface and suggests that the Pohlhausen method becomes less accurate for 
large values of y. 

4.2. Variation of the thickness of the oil sheet with time 

The variation of the oil thickness h with time and position is determined by the 
solution of equation (17). Only one solution of this equation has been found, and 
this for the rather restricted case of the two-dimensional stagnation point. From 
the form of the equation it can be seen that in two dimensions a steady oil state is 
impossible, for in the steady state ah/at = 0, and this would imply that 
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It would then follow that the amount of oil passing any point is constant, but 
since at  the leading edge u2 is zero, no oil passes that point and the constant in 
equation (34) is zero. Thus, by equation (17), it  appears that 

so that either (35 )  

The non-zero form of h is infinite at the pressure minimum, and so there is no 
steady form of h except h = 0. (This result is also true on infinite yawed wings, 
since in this case the y-derivative of the integral of v2 over the thickness h is 
zero.) 

In  general, then, h is a variable function of time. No approximate method has 
been found to determine h, and it would appear that the only method is the 
direct numerical integration of equation (17). (Expansion in powers o f t  was 
found to be only slowly convergent, even for very small values oft.) 

A numerical integration of equation (17) has been carried out for the oil thick- 
ness under a two-dimensional boundary layer with an external velocity distribu- 
tion of the form uo = Po -pix. In  this case equation (17) may be written 

where = (pl/p0) x, h‘ = (pl/vl)* h and f(6) is the non-dimensional skin friction 
given by Howarth (1938). The boundary condition was h’ = 0.5, for all 6,  at 
t = 0. 

The numerical integration of equation (36) is very long and laborious, and so 
only coarse steps have been used to determine thetrends of thesolution. Ingeneral 
the oil leaves the leading edge very quickly and flows downstream. Over the 
rear half of the region between the leading edge and the boundary-layer separa- 
tion, the oil thickness is almost uniform, but increases steadily with time. The 
indication from this rough calculation is that the actual amount of oil on the 
surface appears to increase, suggesting that there may be an inflow of oil from 
downstream of separation. 

5. Oil streamline directions 

the oil velocities given in equation (14), the oil streamline direction is 
In this section the oil-flow direction on a general surface is considered. From 

This direction varies between 
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The direction of the boundary-layer surface streamlines in the absence of the 
oil is 

In  general the pressure term is small compared with the skin-friction term, and 
so has only a small influence on the oil direction except near points of small skin 

/I I 

external to 
boundary 

\ 
FIGURE 6. Oil streamline pattern on a yawed wing. 

friction-for example, near separation. In  figure 6 the oil streamlines at  the wing 
surface and at the oil surface on,an infinite swept wing are drawn. The chord-wise 
velocityon this wing was assumed to beof the form? uo =Po -P1x; theskin friction 
was then found from the power-series solution (Howarth 1938) and the cross-flow 
by an approximate method (Squire 1956). The oil streamlines were considered 

f The constants Po and PI are related to  the velocity of an R.A.E. 104 aerofoil; details 
are given in Appendix 1. 
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for a stage when the oil height varied linearly from zero at  the leading edge to 
twice its original height at  the separation point (starting from an initial uniform 
height of 0.001 in.). (The oil thickness at  other conditions, i.e. with a non-linear 
variation along the surface, did not greatly affect the results as plotted.) It will 
be seen in figure 6 that the two oil streamlines closely follow the surface streamline 
with no oil on the surface, except that the oil streamlines become parallel to the 
leading edge before the surface streamline. 

400 600 200 
\‘elocity (ft./sec ) normal to leading edge 

& 6  
0 
.s 

s 
2 

F: 
3 4 
0 

P$ 
2 

0 200 400 600 

FIGURE 7. Percentage reduction in apparent separation distance for different 
oil-sheet thicknesses and aerofoil chords with speed. 

Eichelbrenner & Oudart (1955) have shown that on a general surface the 
surface streamlines form an envelope at  the separation line, and an envelope 
of the oil streamlines is usually taken as indicating separation. On a yawed 
infinite wing, the envelope is parallel to the leading edge. Thus, in figure 6, the 
oil tends to indicate separation too early. 

Changes in oil thicknesses, forward speeds, and velocity distributions do not 
affect the shape of the curves but merely the relative position at which the 
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curves become parallel to the leading edge; the actual positions are given by the 

and 

With the mean of these two points taken as the separation point indicated by 
the oil, the reduction in separation distance, as a percentage of the chord, for 
various speeds and model sizes is plotted in figure 7. 

These curves, which are independent of the oil viscosity, are useful as guides 
to the thickness of oil which should be used. For example, with a velocity normal 
to the leading edge of 600ft.lsec and a chord of 6in., an oil height of less than 
0.0005in. must be used to keep the separation line indicated by oil within 1 % 
of the true separation line. For a chord of 24in. and the same velocity, the oil 
thickness can be doubled while still giving results of the same accuracy. 

6. Extension of the results to turbulent and compressible boundary 
layers 

6.1. Turbulent boundary layers 

So far the analysis has been confined to laminar layers since the calculation of the 
boundary layer in this case is relatively simple. In  this section the flow under a 
turbulent boundary layer is studied in a qualitative manner. Within the oil 
layer the equations of motion, and the boundary conditions, are unaltered, 
provided that the boundary condition defining equality of stress is written 

r ~ 2 3 ~ 2 l a z  = ( 7 A  1u2av21az = (rY)1, (38) 

where (7Jl and (7Y)l are the x- and y-components of the mean skin friction (i.e. 
mean with respect to time) in the turbulent boundary layer. With this form of 
boundary condition the oil-velocity components become 

with corresponding forms for the streamlines. 
To make use of these equations would involve the calculation of (7Jl and 

(7y)l, and so far no method is available for such a calculation in the general case. 
Even for the case of the infinite yawed wing, experimental results show that the 
chordwise flow is not sufficiently independent of the cross-flow to be found by two- 
dimensional methods. Thus, even in this simple case, two-dimensional values 
may not strictly be used in equation (39) to determine the apparent separation 
line. However, such results are probably adequate to indicate the order of the 
distance between apparent and actual separation. For this purpose experimental 
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results quoted by Goldstein (1938) for a cylinder and an aerofoil ( t / c  = 15 %) 
are used in equations (39) and (40). These experimental results give values of the 
skin friction and the pressure distributions on a cylinder of 5.89in. diameter at 
Reynolds numbers between 1 x lo5 and 2.5 x lo5. Similar measurements are 
given for the aerofoil at various incidences. 

From the results quoted for the aerofoil (and the cylinder at  the higher Rey- 
nolds numbers), it  is found, for oil thicknesses of 0.005 in. and less, that the change 
in the separation point as indicated by the oil is of the same order as in laminar 
flows. Since on the wing the flow is now attached over most of the surface, the 
ratio of apparent attached flow to actual attached flow will be closer to unity for 
turbulent boundary layers than for laminar flows. 

The flow on the cylinder is initially laminar, but becomes turbulent before 
separation. The skin friction on the cylinder increases with distance from the 
stagnation point, reaches a maximum near the minimum pressure point, and 
then decreases again. At transition the turbulence causes the skin friction to 
increase again, before it finally becomes zero at  the separation point. At the lower 
Reynolds numbers the skin friction a t  transition is quite low, whereas the pressure 
gradient is quite large, and substitution of the quoted values in equation (39) 
shows that u2 could be zero at  the transition point for an oil thickness of about 
0.005 in. So, on a yawed cylinder, the oil streamlines could form an envelope at 
the transition line. In  the absence of any other information, this pattern could 
be erroneously interpreted as a laminar separation followed possibly by a turbu- 
lent reattachment. 

6.3. Boundary layers in compressible flow 

In  $ 2 it has been shown that the velocity is very much smaller in the oil than in 
the external flow; thus, even in cases where the external flow is supersonic, 
the flow is still governed by the equations of slow viscous motion, and the solu- 
tion is as in equation (14). It therefore seems probable that the oil pattern will 
be similar to that discussed in $ 5  for incompressible flows. However, the flow 
may now be complicated by the presence of shock waves. The pressure rise 
through a shock may be sufficient to separate the boundary layer, and the infer- 
ences made in $ 5 about the oil motion in the region of separation will also apply 
to such shock-induced separations. In  $ 5 it was shown that near separation the 
oil velocity becomes zero before the boundary-layer skin friction is zero, and 
in this case also the oil may be expected to indicate an earlier separation. For a 
linear adverse pressure gradient, it has been shown that the oil indication under- 
estimates the distance to separation by, at  most, 5 %. As the upstream influence 
of the shock wave in the boundary layer is of the order of 100 boundary-layer 
thicknesses, it would appear that the error in indicated separation will be of the 
order of 5 boundary-layer thicknesses. 

Another effect at higher speeds is that of aerodynamic heating, and heat 
transfer. In  general the heating will change the oil viscosity and so the ratio h 
will become a variable depending on the state of the boundary layer. However, 
provided this change in h is not too great, the main effect on the oil pattern will 
be small since, as shown in $ 5 ,  the actual pattern is independent of oil viscosity. 
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7. Application of the results obtained to the interpretation of wind- 
tunnel oil-flow patterns 

In  this paper the motion of a thin oil sheet has been studied, as the first stage 
in the understanding of the oil-flow patterns obtained in model testing. If the 
oil actually moved as a sheet, the resultant oil pattern would supply only limited 
indication of the oil motion: the only features to be seen would be separation, 
where the oil would accumulate upstream, and regions of high skin friction, such 
as under a vortex, where the surface would be cleared of oil. Generally in practice, 
the oil, although applied as a sheet, moves in filaments, which provide more 
detailed information on the direction of the oil motion. The motion of these 
filaments depends on a different set of equations to those considered in this 
paper. However, the mechanism of the motion is probably similar; that is, the 
resultant force acting on the oil is a balance between the pressure gradient outside 
the boundary layer and the stress due to the boundary-layer skin friction. Thus 
it may reasonably be supposed that the description of the oil-film motion also 
applies qualitatively to the motion of the filaments, and that the orders of magni- 
tude of the changes in separation point are similar in both cases. Stalker (1955) 
has studied the mechanism which results in the formation of the filaments, and 
by order-of-magnitude considerations shows that these filaments do in fact 
follow the surface streamlines except near separation. 

8. Conclusions 
A solution has been obtained for the motion of a thin oil sheet moving on a 

surface under the influence of a boundary layer. The following deductions are 
made from the analysis. 

(a )  The motion of the oil relative to the boundary layer. The oil follows the 
boundary-layer surface streamlines except near separation where it tends to 
form an envelope upstream of the true separation envelope. This early indication 
of separation is expected to occur for both compressible and incompressible flow; 
it is less marked for turbulent than laminar layers. The distance by which 
separation is apparently altered depends on the oil thickness, and the model size, 
but it is independent of the oil viscosity (provided this viscosity is much greater 
than the viscosity of the fluid of the boundary layer). 

( b )  The  eflect of the oil $ow on the motion of the boundary layer. This effect is 
very small in most practical cases but increases as the oil viscosity decreases. 

( c )  Interpretation of the oil pattern at low Reynolds number. Results at low 
Reynolds number should be treated with caution as transition could be errone- 
ously interpreted as separation. 

Appendix 1. Values of the constants Po, PI, ($64, 5) and the constant y 
(equation (20)) 

In  most of the boundary-layer problems in this paper, the velocity outside the 
boundary layer has been assumed to  have linear variation along the chord of the 
form u, = Po - Dl x. The constants can be related to the velocity distributions on 
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the upper surface of the R.A.E. aerofoil sections (Pankhurst & Squire 1950), if it is 
assumed that the velocity varies linearly from the value at the maximum suction 
point to the value at the trailing edge. For all sections with lift coefficients in the 
range 0.2 < C, < 0.6 it has been found that 1 . 2 ~ ~  < Po < 1 . 8 ~ ~  and 

0.3u0lC < p1 < o-9uo/c. 

All calculations have been carried out with the typical values, Po = 1-5u0, 
p1 = 0*6~, /C.  

The constant y (equation (20)) may be evaluated for the external flow 
uo = P0-P1x. Using the skin friction f(6) quoted by Goldstein (1938), the oil 
velocity at the oil surface (equation (15)) becomes 

where 5 = (P,/Po)x* 

Then y, the ratio of the oil velocity to the mainstream velocity, becomes 

I y = h (Pt - f ( f ; ) h - b  . 
Vl t Vl 

This parameter has been used in the calculation of the effect of the oil on the 
boundary-layer flow, and a maximum value of this parameter is required. It 
is not possible to find the maximum by standard methods since the variation of 
h with 5 (or x) is not known. However, with practical oil thicknesses and 
PI = 0.6uo/C, it is found that (hz/31/vl) is at most 1. Alsof(c) is O(l ) ,  except close 
to the leading edge. Thus the maximum value of y is O(h). The maximum value 
of h found in practice is 0.02 for paraffin in a wind tunnel; for the type of heavy oil 
used in high-speed tunnels, h and hence y are O( 

Appendix 2. The equality of viscous stress at the air/oil interface 
Equation (6) states the conditions that the viscous stresses shall be equal 

across the air/oil face. The condition given is strictly valid only for an oil surface 
parallel to the body surface, i.e. z = const. However, this paper is concerned 
with oil layers with thicknesses varying with position, that is, the oil surface is 
given by z = f(x, y). The purpose of this Appendix is to show that equation (6) is 
valid for such surfaces provided azlax, azlay are o( 118). 

The prsof will be given for a surface z = f(x). At a point on this surface direction 
cosines to the surface normal, in the plane y = const., are 1 and n, and the velocity 
along the surface in this plane is ul - wn. 

The derivative of this velocity along the surface normal is 
(43) 

Thus the strict boundary condition at the interface is 
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In the boundary layer au,/az is O( I/&), aul/ax, awl/az are O( 1)  and awl/& are 
O(6).  Thus, provided n/Z is o( I/&), the dominant term on the left-hand side of equa- 
tion (45) is ,u112aul/az. I n  the oil flow, aw2/az, au2/ax are of the same order of 
magnitude, by the continuity equation, and u1 = u2, w1 = w2 at the oil surface. 
Thus we might expect the terms on the right-hand side of equation (45) to have a 
similar relationship to each other. In  this case equation (45) reduces to equation 
(6). The use of equation (6) in $ 2  gives a solution which confirms that the terms 
in equation (45) can be dropped. Thus equation (6) holds for the surface z = f(z) 
provided the ratio of n/l, or az/az, is o( I/&). A similar result holds for z = f(z, y). 

The analysis of this Appendix again breaks down in the vicinity of the separa- 
tion point. However, the region affected is the same as that for the analysis of 
5 2 so that the region of validity is not reduced further. 

R E F E R E N C E S  

BLACK, J. 1952 J .  Roy. Aero. SOC. 56, 279. 
EICHELBRENNER, E. A. & OUDART, A. 1955 La Recherche Aeronautique, 47, 11. 
GOLDSTEIN, S. (Ed.) 1938 Modern Developments in Fluid Dynamics. Oxford University 

GOLDSTEIN, S. 1948 Quart. J .  Mech. Appl. Math. 1, 43. 
HOWARTH, L. 1938 Proc. Roy. SOC. A, 164, 547. 
PANKHURST, R.  C. & S Q ~ E ,  H. B. 1950 Aero. Rm. Counc., Lond., Curr. Pap. 80. 
PRANDTL, L. 1952. Essentials of Fluid Dynamics. London: Blackie. 
SQUIRE, L. C. 1956 Ph.D. Thesis, University of Bristol. 
STALKER, R. J. 1955 Australian A.R.L. Report A 96. 
STANBROOE, A. 1957 Aero. Res. Counc., Lond., Rep. &. Mem. 3114. 
WINTER, K. G., SCOTT-WILSON, J. B. & DAVIES, F. V. 1954 Aero. Res. Counc., Lond., 

Press. 

Curr. Pap. 212. 

12-2 


